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DUALITY IN HOMOGENEOUS PROGRAMMING

The problem of maximizing a concave function subject to linear con-
straints does not have a dual, as is the case in linear programming, in
which primal optimizing variables do not appear. As a special case of our
principal result it will follow that such a dual does indeed exist whenever the
objective function is also homogeneous.

In the linear case we are given an m X n matrix A and vectors* aeRn,
beR™. The feasibility sets X and Y are defined by: X:RTn[x|xA§ aj ,
Y =Ri1 N {y]|Ay _>_ b}. Since xA < a if and only if xAy < ay for all yeR:’1
{(and similarly for Ay > b), we may write:
T X.z RT (\{x'xAy < Yly) ally eR?}

W E R:l N<ylxAy > ¢(x) all xeRT}

where ¢Yly) = ay and ¢(x) = bx.
A fundamental theorem of linear programming (see, e.g., [3] and [51)

states that if X and ¥ are both non-emupty then

(2) max o¢(x), min Yly) exist and are equal .
x€X vey

We propose to demonstrate that (2) holds for larger class of triples (A,¢,¢).

*
R™ denotes the set of all real m-tuples. Ifu, ve R™ then u < v means
that the inequality holds for each component. In particular, RT =

= Rm(\[x|x >03) IfMisapxq matrixand N is a q x t matrix then M
N represents the usual matrix product. To simplify notation, the same
symbol is used for both a column vector and its transpose; the meaning

will, in any case, be clear from the context.
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Assumption A Let ¢ : R, —R, ¢¥: R: —R be positively homo-

1

%
geneous , ccntinuous, concave and convex respectively.
Let us first show that A1 does not guarantee that (2) holds when X and
0 -— -
Y are non-empty. If m =2, n=1 and A —[1], o(x) = ¢(E,n) = B Brar et
[6(0) = 0], ¥ly) =y then A, is satisfied and X = Riﬂ (§',n)| n f_l} ,

Y = R+niy,y > l} are non-empty. Thus min y{y) = 1, but if n < 1 then
yeY
¢(E,n) < 1, although sup ¢(x) = 1, hence max é(x) does not exist.
xeX xeX

The situation just illustrated cannot occur if the following holds:

Assumption AZ'

1]
o

i) If xc_Rin, xA <0, ¢ (x) > 0 then x

i
o

ii) If yeR} , Ay > 0, ¢(y) < O then y

One sees immediately that (i) is violated in the preceding example, for let
x =(1,0) then xA =0 and ¢{x) = 0.

Before proving that if A1 and A2 hold then so does (2), we require the
following lemma which specializes to homogeneous functions the well-known
fact that a concave function is the infimum of its supports. The proof is pre-
sented here for the sake of completeness.

Lemma 1. Let ¢ be as in assumption Al’ consider
T = R™N {tltx > $(x) ail xeRT}, then T is non-empty, and ¢(x) =inf tx,
for all xeR:n. vt

Proof. Let C =§(x,7\)| xeRr+n, A< ¢(x)} then C is a closed convex

cone. Now if xoe‘R:n, p > 0, then (xo, B+ ¢>(x0)¢C.whence (see [2], Theorem 1)

A function f: C —*Rq, where C e RP is a cone, is positively homogeneous

providing f{Ax) = Af(x) for all xeC and X€R+ .




there exist teR"" and aeR such that tx0 -alp+ ¢(xo)] <0< tx-ar all
(x,\) eC.
It then follows that a > 0, so that (dividing by a) we may assume

a = 1, but then t € T. Reiterating, if erRT, i > 0 then 3t€T such that:
1:x0 -p < ¢~(x0) < txo

giving the desired result. We are now able to prove:
Theorem 1. If assumptions A, and A2 hold then (2) holds.

Proof. Let

S = RN s |sy < yly) , all yeR:}
(3)
T = Rmn{cltx > $(x) ) all xeRin}
Then S and T are convex sets; now consider the system of inequalities:
(4) (x,y,s,the RD" X R} XS x T
s - xA >0

-t + Ay > 0
(x) - yly) > 0
If (4) has a solution x, y, s, t then
Yly) < ¢{x) < tx < xAy < sy < ¥ly) .
which is a contradiction. Thus (see [2], Theorem 1) there exist X, eRin R
Yo € RI:, N €R+, not all zero and such that (s -.?cAiyO +xo(Ay -t) + N d(x) -¢(y)] ¢

< 0 for all .stT, y ERi, se€S, teT. From the homogeneity and continuity

of ¢ and ¥ it then follows that:




xAy, > M(x) all xeRY
xgAy < Nly) all yeR}
Y, < tx0 . all se€S, teT

The last condition together with Lemma 1 imply:

Now if N =0 then either x, # 0 or Yo # 0 and Ay, > 0, xqgA < 0.
Suppose x £ 0, if Yo # 0 the argument is analogous, then by Az(i) we have
¢(x0) < 0, whence ]b(yo) < 0 and Yo # 0, contradicting Az(ii). Thus X\ > 0
and, dividing all inequalities by A\, we may assume X\ = 1. This tells us that

xy€X, yy€Y and ¢(xo) < xgAyy < w(yo) < ¢(x0). So that if x€X, ye€Y then

¢(x) < xAy, < dlyg) = ¢(x,)

Uly) > x Ay > o(x5) = ¥ly,)

proving the theorem.

In case ¢ and ¢ are linear-homogeneous then it is true that max ¢(x)
xe€X

exists if and only if min ¢ (y) exists, in which case they are equal. As above,
yeyY

this statement is not always true under assumption Al; however, we show:
Theorem 2.

I If Al and Az(ii) hold, and max ¢(x) exists then (2) holds.
xeX

1) 1f A1 and Az(i) hold, and min Y(y) exists then (2) holds.
. vyEY

°
We prove (I), the proof of (II) is similar. Suppose that xq € X and ¢(xo) =

= max ¢(x)'then the system:
xeX .




(6) (%, s)eRinx S
s -xA >0

$(x) - d(xg) > 0
has no solution. Thus (see [2], Theorem 1) there exist Yo GRY_:, MeR,,
not both zero and such that

5Yg - xAyo + M d(x) - ¢(x0)] < 0 forall x eRin, s€S. From the
homogeneity of ¢ and Lemma 1 it then follows that

xAy. > \o(x) for all xeR™
(7 0 - +

Wlyg) < Nolxg)

Now, if X\ = 0 then Yo # 0 and Ayo > 0, w(yo) < 0, contradicting Az(ii).
It may then be assumed that X > 0 and, in fact, that X = 1 (replacing Yo by

)\yo). Thus, from (7}, Yo €Y, and for any y € Y we have:
Ulyg) < ¢lxg) < x,Ay < Yly)

i.e., l//(yo', = min ¢ly) = ¢(x0) . q.e.d.
yey

It should be remarked that if A1

¢ .
are equivalent to {i)' and (ii)' respectively of:

holds then (i) and (ii} of assumption A2

Assumption 'A'2 0

i)' Jyg €RY IxAy, >¢(x) all xeR} , x#0
ii)" BerRf‘ Ix, Ay <yly) all yeR::, y £ 0

These in turn are equivalent to the familiar conditions that X, Y have non-

empty interiors. Tc see, for instance, that (i) and (i)' are equivalent it

=,




suffices to show that (i) implies (i)' since the implication in the other direc-

tion is trivial. Assuming (i)' false, the system

(8) (y,t) eR’+‘ x T

Ay -t>0

has no solution, whence (see [2], Theorem 1) there is an x €RT, x £ 0, and
such that xAy < tx for all yeRY and teT. Thus xA < 0 and (using
Lemma 1) ¢({x) > 0, contradicting (i). To return to our remark about maxi-
mizing a concave homogeneous and continuous function ¢: R:_n — R, subject

to the inequalities x > 0 and xA < a, the dual is then: minimize ay subject

to yeY. Conditions (i) and (ii)' become:

xeR:_n, x £ 0, xA <9, &(x) >0 has no solution; and
xeR:n, xA < a has a solution; respectively.

Also, since yeY providing y> 0 and Ay > t for some support t of ¢,
we may characterize Y by means of the gradient of ¢.
Results similar to Theorems 1 and 2 can be shown to hold under other

and somewhat less restrictive assumptions; the duality theorems of linear

programming then turn out to be special cases of these theorems (3, 4 and 5).

Henceforth we assume that ‘AJ holds and consider the sets:

K

R™YHA LR F,0)|3 seS, teT, xeR™ yeR® and
+ +

®

1

x>t-Ay, §<s-xA, \ < ox) - w(y)}}

K =Rn+1r\ {(y,)\)“ﬂ s€S, xeRT, and ¥ < 5 - xA, A < fb(x)‘&)

A
!

-RTTN {3 teT, yeRY, and 22t - Ay, k2 )




The sets Kl’ KZ’ and K, are readily seen to be convex (because ¢ and -¢

3
are convex); furthermore, if ¢ and ¥ are linear then Kl’ K2 and K3 are
also closed sets. Of course any (or all) of Kl’ KZ’ K3 may be closed with-
out either ¢ or ¢ being linear. Thus it is important to know the following:
Theorem 3.
If K1 is closed and X, Y are both non-~mpty, then (2) holds.

Theorem 4.

If K3 is closed and max &¢(x) exists, then (2) holds.
x€X

Theorem 5.

1f K2 is closed and min Y¥(y) exists, then (2) holds.
yey

Proof of Theorem 3: If the point {X,y,\) =0 is in K1 then (2) obviously

holds, suppose 0 ¢ K,. Since K, is convex and closed, there exist (see [3])

eR™, vy eR™, \_€R, ae€R, such that:

) 0 0

0 < a < x3% - vy - X\, all (x,y,\) €K,

Since S and T are non-empty {see Lemma 1), and since (f{,):/,):)sKl when-

< ¥ and X <\, it follows

< W

ever there exist !X,y,\) €K, such that x > X,

that x

(¢}

¥

zO,yCzO, and A, > 0. Als

0 0

O < a E xo (t - AY) - {S ‘XA)’YO‘)\O[¢(X) - d/(Y)] s

n

all {s,t,x,y)eS 2 T X Rinx R,

From the homogeneity of ¢ and ¥ and Lemma 1 it then follows that:

0 < a < &lxg) - wlyy)
XAy < Ny uly) all yeRI_:

A m
xAyO > )\ch(x) all x€R+




Thus, )‘0 K/J(YO) > onyo > )‘0 ¢(xo) > )\.oa + Xow(yo) , and )\0 = 0. But then
xOA_<_ 0 and Ay0_>_ 0. Now X, Y we assumed non-empty, let x€X yeY.

For any \ €R+ we then have:
&(x) + Mblxg) < dlx +Axg) < (x + Axy)Ay <
< (x+ XxO)A(y + Xyo) < scA(y + Xyo)

< Wly + Nyg) < Uly) + N\ly,) -

Thus, ¥y) -¢(x) > M é(x;) - ¥lyy)] > X a for all AeR _ which contradicts

a>0. Thus 0 € K1 and (2) holds. q.e.d.

Proof of Theorems 4 and 5: We prove Theorem 4, the proof of Theorem 5 is

analogous. By hypothesis X is non-empty and ¢ is bounded above on X, let:

M = sup o¢{x)
x€X
If (x,\) =(0,M) is in K3 then, trivially, (2) holds. We show that the
contrary assumption leads to a contradiction. If (O, M) ¢ K3 then, as in the
proof of Theorem 4, it fcllows from the various properties of K3 that there

exist xoeRin, K0€R+ and a€R such that:

n
)\OM <ac< xo(t-Ay) + )\Ol/J(y), all (t,y) T x R+

Hence, as before,

' n
xgAy < )\Od/(y), all yeR_

and ¢(xo) >N .M.

0




If A\, is positive then x =\~ lxOEX and ¢(x) > M, contradicting the definition

0
of M. Thus xo =0, and on <0, ¢(xo) > 0; the last contradicts the fact

5

that X is non-empty and that ¢ is bounded above on X. q.e.d.

As a final result we demonstrate that if ¢ and Y are both linear (homo-
geneous) then K1 is closed. That K2 and K3 are closed, under the same

linearity hypothesis, follows in a similar manner.
[}

Suppose ¢(x) = bx, Yly) = ay (beRm, aeRn) , first note that in this

case:

S = {s\ seR™ and sfa}

T = {t‘teRm and tzb}

Next, suppose we have a sequence (ik, ;k’ )\k)eK1 (k=1, 2, ...) which
m+n+l n

converges to (§,§,X)€R Thus there exist (sk, tk' X0 yk) € S xTle;an+

such that:
xkitk-Aykzb-Ayk

(9) ;kfsk-xkAfa.-xkA k=1, 2,
b S LS = &,

and

(10) Ek——i, §k~§, N T

[ ]
Now, suppose xeRm,‘ eRn, a€e R, are such that Ay - ab > 0, xA -aa < 0.
PP + Yy + + . z -

From (9) it then follows that for each k we have:
x;;,k_>_ bx - mYk_>_ bx - cay, > bx - cxbxk + o.)\k_>_

2bx+a)~k-xkAysz+u)\k+§ky—ay.

-9-




IR

i.e., x(:‘ck-b) +y(a-;r'k) - a)\k >0, k=12, ... and, by (10),
x(x-b) + yla-y) - a\ > 0.

In summary, then, the system:

m
x€R

n
i y€R+, geR

+
s Ay-ab>0, xA-aa<0

x(Xx-b) + yla-y) - aA < 0

has no solution. It follcws then from the ordinary feasibility theorm for

linear inequalities (see e.q.[5]) that there is an xeRin and yeR:_1

such that: »

(x,y)| A 0 -b

i.e., xA < a-;r, -Ay < %X -b and ay -bx < -A. But, as noted before,

a€S and beT, thus (x,y,\) €K, and K, is closed.

-10-
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